Characterization of elastic topological states using dynamic mode decomposition
نویسندگان
چکیده
Elastic topological states have been receiving increased attention in numerous scientific and engineering fields due to their defect-immune nature, resulting applications of vibration control information processing. Here, we present the data-driven discovery elastic using dynamic mode decomposition (DMD). The DMD spectrum modes are retrieved from propagation relevant along boundary, where nature is learned by DMD. Applications such as classification synthesis wave can be achieved underlying characteristics We demonstrate between traditional metamaterials modes. Moreover, model enabled realizes state given interface. Our approach characterizing pave way towards phenomena material physics more broadly lattice systems.
منابع مشابه
An Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملRandomized Dynamic Mode Decomposition
This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations. They are able to ease the computational challenges arising in the area of ‘big data’. The idea is to derive from the high-dimensional input matrix a smaller matrix, which is then used to effi...
متن کاملBayesian Dynamic Mode Decomposition
Dynamic mode decomposition (DMD) is a datadriven method for calculating a modal representation of a nonlinear dynamical system, and it has been utilized in various fields of science and engineering. In this paper, we propose Bayesian DMD, which provides a principled way to transfer the advantages of the Bayesian formulation into DMD. To this end, we first develop a probabilistic model correspon...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملEdge-decomposition of topological indices
The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2023
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.107.184308